An ab Initio Study Resulting in a Greater Understanding of the HSAB Principle

Pratim K. Chattaraj* and Paul v. R. Schleyer

Contribution from the Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India, and Institut für Organische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 42, D-8520 Erlangen, Germany

Received August 5, 1993. Revised Manuscript Received October 21, 1993*

Abstract: The quantitative applicability of the hard-soft acid-base (HSAB) principle has been tested. Complexes of HF and Ag⁺ with several bases (HF, HCl, HBr, H₂O, H₂S, H₂Se, NH₃, PH₃, and AsH₃) have been studied at the HF, MP2, and QCISD(T) levels with 6-311+G** basis sets. Ab initio pseudopotential calculations have been performed for the molecules containing heavier elements, viz., Br, Se, As, and Ag⁺. For the hard acid HF, the HSAB principle has been found to be valid even at the HF level. Correlation is important for soft-soft interactions. The maximum hardness principle has been found to be valid for reactions of HF. Reactions of hard acids like H⁺, Li⁺, and Na⁺ have also been studied at the MP2/6-311+G** level. Out of 45 reactions studied, there are only five reactions which are not in conformity with the HSAB principle.

Introduction

Pearson's¹⁻³ hard-soft acid-base (HSAB) principle states that "hard acids prefer to coordinate with hard bases and soft acids prefer to coordinate with soft bases for both their thermodynamic and kinetic properties". Although there have been several attempts⁴⁻⁶ to provide formal proofs of this principle, a thorough ab initio quantitative study of it is still awaited. In the present paper we try to obtain the reaction energies for several bases reacting with a typical hard acid (HF, H⁺, Li⁺, Na⁺) or with a soft acid (Ag⁺) and to see how well the HSAB principle works. Using the present calculation as a template it can be checked as to the how HSAB principle reflects these theoretical results. The bases considered here are HX(X = F, Cl, Br), $H_2Y(Y = O, S,$ Se), and H_3Z (Z = N, P, As). The order of preference for a hard acid to bind with these bases, according to HSAB principle,^{3,7} is as follows: $F \gg Cl > Br$, $O \gg S > Se$, and $N \gg P > As$. For a soft acid the order of preference is the following: $F \ll Cl <$ Br; $O \ll S < Se$ and $N \ll P > As$. It may be noted that this order^{3,7} of base affinity of a Lewis acid has been observed in the aqueous medium. The present study provides results for gasphase reactions. The lack of such results has given rise to a lot of controversy in the past.⁸ The effect of solvation of ions^{8,9} should be taken into consideration in order to have a proper understanding of a generalized acid-base reaction vis-a-vis HSAB principle. The data for soft-soft interactions are very scanty. The results obtained for the soft cation Ag⁺ would provide the much awaited numerical test of the HSAB principle in case of soft-soft interactions. As revealed by the ΔH°_{298} values, for the process $Ag^+(g) + X^-(g) = AgX(g)$, the affinity of Ag^+ for the halide ions in the gas phase follows the trend $F^- > Cl^- > Br^- >$

(2) Pearson, R. G. J. Chem. Educ. 1965, 581, 643.

- 2, Maksic, Z. B., Ed.; Springer-Verlag: Berlin, 1990; pp 45-76. (b) Chattaraj, P. K.; Parr, R. G. In Chemical Hardness; Sen, K. D., Mingos, D. M. P., Ed.; Springer-Verlag: Berlin, 1993, Vol. 80, pp 11–25. (c) Chattaraj, P. K. J. Ind. Chem. Soc. 1992, 69, 173.

 - (4) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
 (5) Nalewajski, R. F. J. Am. Chem. Soc. 1984, 106, 944.
 - (6) Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. 1991, 113,
- 1855 (7) Huheey, J. E. Inorganic Chemistry: Principles of Structures and
- Reactivity, 3rd ed.; Harper and Row: New York, 1983.
- (8) Datta, D.; Singh, S. N. J. Chem. Soc., Dalton Trans. 1991, 1541 (9) Williams, R. J. P.; Hale, J. D. Struct. Bonding (Berlin) 1966, 1, 249.

I⁻. In the present study we have considered the reaction of Ag⁺-(g) with HX(g), $H_2Y(g)$, and $H_3Z(g)$. Some of the hard-hard interactions studied here have been studied earlier with different levels of computation, in the context of hydrogen bonding^{10,11} and proton, Li, and Na affinities.¹²

Pearson¹³ also proposed the "maximum hardness principle" ¹⁴ (MHP) which states that "there seems to be a rule of nature that molecules arrange themselves so as to be as hard as possible". Since these two principles are related,⁶ we would also like to understand the implications of the MHP in the present context. For this purpose, we compute the hardness values for different species as15

$$\eta = (\epsilon_{\rm LUMO} - \epsilon_{\rm HOMO})/2 \tag{1}$$

where ϵ_{LUMO} and ϵ_{HOMO} are the lowest unoccupied molecular orbital and the highest occupied molecular orbital energies, respectively. It may be noted that these energy values (especially ϵ_{LUMO}) are highly basis set dependent and they hardly carry any meaning for MP2 or QCISD(T) calculations. Accordingly, the values are calculated only at the HF level and only for complexes of HF.

Note that it is, however, possible to calculate η at the correlated level using the following formula

$$\eta = (I - A)/2 \tag{2}$$

where I and A are the ionization potential and the electron affinity, respectively. Due to the computational labor associated with Iand A calculations we refrain from using this definition of η . Recently, Chattaraj and co-workers¹⁶ have shown that these two definitions provide identical qualitative trends at the SCF level although the numerical values differ owing to the well-known limitations of Koopmans' theorem. An alternative definition¹⁷

1982, 86, 3308.

(14) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854.
 See, also: (a) Parr, R. G.; Gázquez, J. L. J. Phys. Chem. 1993, 97, 3939. (b)
 Pearson, R. G.; Palke, W. E. J. Phys. Chem. 1992, 96, 3283.

(15) Pearson, R. G. Proc. Natl. Acad. Sci. U.S.A. 1986, 89, 1827.

(16) (a) Chattaraj, P. K.; Nath, S.; Sannigrahi, A. B. Chem. Phys. Lett. 1993, 212, 223. (b) Nath, S.; Sannigrahi, A. B.; Chattaraj, P. K., communicated.

(17) Orsky, A. R.; Whitehead, M. A. Can. J. Chem. 1987, 65, 1970.

© 1994 American Chemical Society

^{*} Author for correspondence.

[•] Abstract published in Advance ACS Abstracts, December 1, 1993. (1) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

^{(3) (}a) Pearson, R. G. In Theoretical Models of Chemical Bonding, Part

⁽¹⁰⁾ Scheiner, S. In Theoretical Models of Chemical Bonding, Part 4; Maksic, Z. B., Ed.; Springer-Verlag: Berlin, 1991; pp 171-227.
 (11) Hinchcliffe, A. J. Mol. Struct. (THEOCHEM) 1984, 106, 361.
 (12) Smith, S. F.; Chandrasekhar, J.; Jorgensen, W. L. J. Phys. Chem.

⁽¹³⁾ Pearson, R. G. J. Chem. Educ. 1987, 64, 561.

Table 1. Total Energies (-au), Zero Point Vibrational Energies (kcal/mol), and Hardness Values (ev) of Different Bases at Different Levels of Theory

	/6-311+G**//MP2(FU)/6-311+G**								
species, PG	HF/6-311+G**// HF/6-311+G**	ZPE (NIMAG)	η	MP2(FU)	MP2	MP3	MP4	QCISD	QCISD(T)
HF, C _∞ ,	100.05326	6.42(0) 4.50(0)	10.48	100.29783	100.27879	100.27682	100.28613	100.28129	100.28523
HBr, $C_{\infty p}$	13.72520	3.98(0)	7.16	13.84775	13.84775	13.86087	13.86350	13.86181	13.86402
H_2O, C_{2v} H_2S, C_{2v}	398.70210	10.09(0)	6.23	398.96826	398.84751	398.86646	398.87204	398.86932	398.87317
H2Se, C2v NH3, C3v	10.29660 56.21467	8.86(0) 22.90(0)	5.92 7.13	10.42542 56.43444	10.42542 56.41531	10.44355 56.42621	10.44822 56.43431	10.44624 56.42940	10.44941 56.43460
PH3, C3v AsH3, C3v	342.47799 7.76795	16.09(0) 14.60(0)	6.05 6.03	342.73743 7.89287	342.61301 7.89287	342.63543 7.91488	342.64209 7.92102	342.64016 7.91959	342.64387 7.92288
Ag+, K _h	145.84841			145.95095	146.18688	146.17176	146.18556	146.17646	146.18276

Table 2. Total Energies (-au), Zero Point Vibrational Energies (kcal/mol), and Hardness Values^a (ev) of Binary Complexes of HF and Ag⁺ at Different Levels of Theory

	/6-311+G**//MP2(FU)/6-311+G**								
species, PG	HF/6-311+G**// HF/6-311+G**	ZPE (NIMAG)	η	MP2(FU)	MP2	MP3	MP4	QCISD	QCISD(T)
FHFH, C _s FHClH, C _s FHClH, C _s FHBrH, C _s FHSH ₂ , C _s FHSH ₂ , C _s FHNH ₃ , C _{3v} FHAsH ₃ , C _{3v} FHAsH ₃ , C _{3v} [AgFH] ⁺ , C _s [AgClH] ⁺ , C _s [AgOH ₂] ⁺ , C _{2v} [AgSH ₂] ⁺ , C _s [AgSH ₂] ⁺ , C _s	200.11338 560.15141 113.78093 176.12000 498.76123 110.35513 156.28540 442.53745 107.82569 245.92482 605.96051 159.59350 221.94111 544.58452 156.18171	$\begin{array}{c} 14.45(0)\\ 12.01(0)\\ 11.44(0)\\ 23.31(0)\\ 18.46(0)\\ 17.05(0)\\ 32.45(0)\\ 24.38(0)\\ 22.68(0)\\ 6.76(0)\\ 5.19(0)\\ 4.69(0)\\ 15.98(0)\\ 11.68(0)\\ 10.37(0) \end{array}$	9.86 7.89 7.27 9.16 6.44 6.10 7.54 6.30 6.21	200.60327 560.59695 114.14969 176.60705 499.27469 110.73130 156.75363 443.04437 108.19676 246.27382 606.27173 159.82852 222.29036 544.96753 156.42763	200.56510 560.52831 114.13062 176.56890 499.13483 110.71223 156.71535 442.90086 108.17769 246.49245 606.46158 160.06890 222.51093 545.08870 156.67004	200.56109 560.54127 114.14151 176.56906 499.15137 110.72787 156.72324 442.92084 108.19714 246.47474 606.45923 160.06401 222.49615 545.08810 156.66839	200.57975 560.55457 114.15371 176.58836 499.16665 110.74229 156.74138 442.93725 108.21293 246.49828 606.47919 160.08366 222.52164 545.11180 156.69164	200.56989 560.54700 114.14688 176.57755 499.15856 110.73496 156.73079 442.92984 108.20618 246.48408 606.46635 160.07137 222.50614 545.09768 156.67830	200.57798 560.55425 114.15331 176.58700 499.16679 110.74250 156.74060 442.93796 108.21374 246.49449 606.47693 160.08124 222.51807 545.10975 156.68973
$[Ag. NH_3]^+, C_{3v}$ $[Ag. PH_3]^+, C_{3v}$ $[Ag. AsH_3]^+, C_{3v}$	202.11672 488.37273 153.63525	25.28(0) 17.83(0) 14.66(0)		202.45232 488.75006 153.87798	202.67544 488.86972 154.11971	202.66657 488.87028 154.12303	202.69269 488.89622 154.14745	202.67681 488.88174 154.13417	202.68967 488.89369 154.14616

^a Only for HF complexes.

Table 3. Reaction Energies (-kcal/mol) for Reactions of HF and Ag⁺ with Various Bases at Different Levels of Theory

	/6-311+G**//MP2(FU)/6-311+G**							
reactions	HF/6-311+G**// HF/6-311+G**	ZPE ^a - corrected values	MP2(FU)	ZPE ^a - corrected values	MP4SDTQ	ZPE ^a - corrected values	QCISD(T)	ZPE ^a - corrected values
HF + HF = FH - FH	4.30	2.87	4.77	3.34	4.70	3.27	4.72	3.29
HF + HCl = FH - ClH	1.77	0.80	3.08	2.11	3.03	2.06	3.02	2.05
HF + HBr = FH - BrH	1.55	0.62	2.58	1.65	2.56	1.63	2.55	1.62
$HF + H_2O = FH - OH_2$	8.43	6.27	9.73	7.57	9.54	7.38	9.51	7.35
$HF + H_2S = FH - SH_2$	3.68	1.94	5.40	3.66	5.32	3.58	5.26	3.52
$HF + H_2Se = FH - SeH_2$	3.31	1.73	5.05	3.47	4.98	3.40	4.93	3.35
$HF + NH_3 = FH \cdot \cdot \cdot NH_3$	10.96	8.17	13.40	10.61	13.14	10.35	13.03	10.24
$HF + PH_3 = FH \cdot \cdot \cdot PH_3$	3.89	2.23	5.72	4.06	5.67	4.01	5.56	3.90
$HF + AsH_3 = FH - AsH_3$	2.81	1.33	3.80	2.32	3.63	2.15	3.53	2.05
$Ag^+ + HF = [Ag - FH]^+$	14.53	14.23	15.71	15.41	16.68	16.38	16.63	16.33
$Ag^+ + HCl = [Ag - ClH]^+$	10.52	9.91	16.67	16.06	18.84	18.23	18.80	18.19
$Ag^+ + HBr = [Ag - BrH]^+$	12.48	11.85	18.71	18.08	21.71	21.08	21.62	20.99
$Ag^+ + H_2O = [Ag - OH_2]^+$	24.72	23.37	28.67	27.32	30.78	29.43	30.55	29.20
$Ag^{+} + H_2S = [Ag - SH_2]^{+}$	21.34	19.92	30.32	28.90	34.01	32.59	33.77	32.35
$Ag^+ + H_2Se = [Ag \dots SeH_2]^+$	23.03	21.69	32.16	30.82	36.31	34.97	36.12	34.78
$Ag^{+} + NH_{3} = [Ag \cdots NH_{3}]^{+}$	33.66	31.54	42.00	39.88	45.69	43.57	45.37	43.25
$Ag^+ + PH_3 = [Ag \cdots PH_3]^+$	29.07	27.52	38.70	37.15	43.03	41.48	42.08	40.53
$Ag^+ + AsH_3 = [Ag \cdot \cdot \cdot AsH_3]^+$	11.85	11.80	21.43	21.38	25.64	25.59	25.42	25.37

^a Scaled by 0.89; ZPE values are calculated at the HF/6-311+G** level.

of η has been found to provide better hardness ordering as well as acceptable trends in diatomic bond energy values of several hard and soft acids and bases.

Hardness can also be calculated within the density functional theory (DFT)¹⁸ which often provides results comparable to that of traditional ab initio calculations. It may be noted that Kohn-Sham orbitals are different from canonical MOs, and the

calculation of η in terms of HOMO–LUMO gap is not straightforward. However, other definitions may be suitable for hardness calculation within DFT. For example, Kostyk and Whitehead¹⁹ have calculated η using the Orsky–Whitehead¹⁷ definition using

(18) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.

Table 4. Geometrical Parameters^a of Binary Complexes of HF and Ag⁺ Calculated at the MP2/6-311+G^{**} Level

species, PG	F–H	H(Ag)–X	X–H′	<f-h-x< th=""><th><h(ag)-x-h'< th=""><th><h′–x–h′< th=""></h′–x–h′<></th></h(ag)-x-h'<></th></f-h-x<>	<h(ag)-x-h'< th=""><th><h′–x–h′< th=""></h′–x–h′<></th></h(ag)-x-h'<>	<h′–x–h′< th=""></h′–x–h′<>
FHFH, <i>C</i> s	0.921	1.870	0.919	171.37	124.56	
FHClH, Cs	0.920	2.412	1.275	174.73	101.43	
FHBrH, <i>C</i> s	0.920	2.554	1.418	175.45	92.90	
FHOH2, <i>C</i> 3	0.931	1.731	0.960	177.81	117.89	104.68
FHSH2, Cs	0.925	2.313	1.333	178.85	104.55	92.67
FHSeH ₂ , C _s	0.926	2.434	1.469	179.38	95.14	91.60
FHNH3, C3v	0.948	1.701	1.015	180.00	111.95	106.89
FHPH3, C3v	0.926	2.377	1.405	179.98	121.03	95.82
FHAsH3, C3v	0.924	2.501	1.512	180.00	122.29	94.13
[Ag…FH]+, Cs		2.403	0.925		179.21	
[AgClH]+, Cs		2.597	1.283		103.67	
[AgBrH]+, Cs		2.679	1.426		97.54	
$[AgOH_2]^+, C_{2v}$		2.275	0.963		127.15	105.71
$[AgSH_2]^+, C_s$		2.524	1.339		100.04	93.91
$[AgSeH_2]^+, C_s$		2.630	1.474		95.48	92.15
[AgNH3] ⁺ , C3v		2.242	1.018		112.70	106.05
[AgPH ₃] ⁺ , C _{3v}		2.468	1.395		116.27	101.90
[AgAsH ₃] ⁺ , C _{3v}		2.820	1.540		57.03	93.19

^a Distances in Å and angles in deg; X = F, Cl, Br, O, S, Se, N, P, As; for [Ag-AsH₃]⁺: Ag-H' = 2.366, <H'-Ag-As = 33.10, and <H'-Ag-H' = 56.45; H' is H bound to X.

DFT. An ab initio DFT has been used²⁰ recently to calculate η as the first derivative of chemical potential with respect to the number of electrons at constant external potential. A dynamical variant of MHP has been provided recently by Chattaraj and Nath²¹ within a quantum fluid density functional framework. In this calculation hardness has been calculated as a time-dependent density functional.

Computational Details

For various bases and their complexes with HF or Ag⁺, computation comprises four steps, viz. (i) geometry optimization at the HF level, (ii) frequency calculation at the HF level, (iii) geometry optimization at the MP2 level, and (iv) QCISD(T) single point calculation at the MP2optimized geometry. Unless otherwise specified the basis set used is 6-311+G**. For molecules containing heavier elements, Br, Se, As, and Ag⁺ ab initio pseudopotential calculations have been performed. The basis set used for Br (7 ve-ecp-mwb, dz+p with diffuse exponents, s, 0.051, p, 0.038) has been taken from Kaupp et al.²² who fitted it to the pseudopotential of Br calculated by Schwerdtfeger et al.23 For Se (6 ve-ecp-mwb, dz + p with diffuse exponents, s, 0.043, p, 0.033) and As (5 ve-ecp-mwb, dz+p with diffuse exponents, s, 0.037, p, 0.029) they are from Küchle et al.²⁴ Both the basis set and the pseudopotential for Ag (19 ve-ecp-mwb, 8s7p6d/6s5p3d) have been taken from Andrae et al.²⁵ The basis set of Ag has been augmented by an additional f function with exponent 1.7 (obtained through a quadratic fit for the minimum energy) during QCISD(T) single point calculations. Hardness values for HF complexes have been calculated using eq 1 and orbital energy values from HF optimization. For H⁺, Li⁺, and Na⁺ complexes, geometries are optimized at the MP2/6-311+G** level. All calculations have been carried out with the Gaussian 90 program.²⁶

Results and Discussion

Total energies, zero point vibrational energies (ZPE), and hardness values of the acids (HF and Ag⁺) and the bases and

- (19) Kostyk, R. J.; Whitehead, M. A. J. Mol. Struct. (THEOCHEM) 1991. 230. 83.
- (20) Galván, M.; Pino, A. D.; Joannopoulos, J. D. Phys. Rev. Lett. 1993, 70.21
- (21) (a) Chattaraj, P. K.; Nath, S. Chem. Phys. Lett., in press. (b) Chattaraj, P. K.; Nath, S. Proc. Indian Acad. Sci. (Chem.Sci.), in press.
- (22) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. J. Am. Chem. Soc. 1991, 113, 6012
- (23) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762
- (24) Küchle, W.; Bergner, A.; Dolg, M.; Stoll, H.; Preuss, H., to be published. (25) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 124.

(26) Gaussian 90, Revision F; Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.; DeFrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A. Gaussian Inc.; Pittsburgh, PA, 1990.

Table 5.	Total Ener	gies (-au) o	f Binary	Complexes	of H ⁺ , L	i ⁺ , and
Na ⁺ with	Various Ba	ses Calculat	ed at the	MP2/6-31	1+G** I	_evel
and Com	parison to C	ther Literat	ure Valu	es		

: DC	MP2/6-311+G**//	Smith et al. values
species, PG	MP2/6-311+G++	(6-31G*//3-21G)
$[FH_2]^+, C_{2v}$	100.49044	100.19553
$[ClH_2]^+, C_{2v}$	460.51823	460.26528
$[BrH_2]^+, C_{2v}$	14.07349	
$[OH_3]^+, C_{3v}$	76.56895	76.28603
[SH ₃]+, C _{3v}	399.25167	398.94042
$[SeH_3]^+, C_{3v}$	10.70518	
$[NH_4]^+, T_d$	56.77493	56.53056
[PH ₄]+, <i>T_d</i>	343.05265	342.76127
$[AsH_4]^+, T_d$	8.19166	
[Li–FH]+, <i>C</i> ∞v	107.58362	107.28209
[Li–ClH]+, <i>Cs</i>	467.57102	467.31691
[Li–BrH]+, Cs	21.12327	
$[Li-OH_2]^+, C_{2v}$	83.59939	83.30750
[Li–SH2]+, <i>Cs</i>	406.25635	405.93062
$[Li-SeH_2]^+, C_s$	17.71281	
[Li–NH3] ⁺ , C _{3v}	63.74827	63.48958
[Li–PH ₃]+, C _{3v}	350.02869	349.72438
[Li–AsH3]+, C3v	15.17758	
[Na−FH]+, C _{∞v}	262.11901	261.69445
[Na–ClH]+, Cs	622.10542	621.73274
[Na–BrH]+, <i>Cs</i>	175.65843	
$[Na-OH_2]^+, C_{2v}$	238.12810	237.71402
[Na–SH2]+, Cs	560.78798	560.34586
[Na–SeH ₂]+, Cs	172.24483	
[Na–NH3] ⁺ , C3v	218.27410	217.89347
[Na–PH3]+, C3v	504.55987	504.13506
[Na–AsH ₃]+, C _{3v}	169.71002	
Li ⁺ , <i>K</i> _h	7.24835	7.23554
Na ⁺ , <i>K_h</i>	161.79415	161.65929

their complexes are presented in Tables 1 and 2, respectively. These tables also contain the respective numbers of imaginary frequency (NIMAG) obtained from the frequency calculations. The zero value for NIMAG of any given species assures that the molecular symmetry considered for the geometry optimization corresponds to the minimum energy structure. The hardness values are calculated at the HF level because in other calculations orbital energy values are not very meaningful quantities. It is quite gratifying to note that for the interaction with the hard acid, HF, the η values follow the same trend as that of expected stability of the products as suggested by the HSAB principle.^{3,7} In this case it is nothing but the implication of the maximum hardness principle.^{13,14} For a given group of species, the most favorable reaction according to the HSAB principle will give the most stable product with maximum hardness value. Thus, for HF interaction, the hardness order is the same as the order of

Table 6. Reaction Energies (-kcal/mol) for Reactions of H⁺, Li⁺, and Na⁺ with Various Bases at the MP2/6-311+G^{**} Level and Comparison to Available Literature and Experimental Data

	MP2/ 6-311+G**//	ZPE-	Smith et al. values	
	MP2/	corrected	6-31G*//	exptl
reactions	6-311+G**	values	3-21G	values
$H^+ + HF = [FH_2]^+$	120.86	115.48	121.4	117
$H^{+} + HC_{1} = [C_{1}H_{2}]^{+}$	140.57	135.22	129.1	128.6
$H^{+} + HBr = [BrH_{2}]^{+}$	141.65			139
$H^+ + H_2O = [OH_3]^+$	172.70	165.05	173.3	166.5
$H^{+} + H_{2}S = [SH_{3}]^{+}$	177.83	170.68	171.8	170.2
$H^{+} + H_2Se = [SeH_1]^{+}$	175.54			171.3
$H^+ + NH_3 = [NH_4]^+$	213.65	204.28	218.4	204.0
$H^{+} + PH_{3} = [PH_{4}]^{+}$	197.79	190.49	197.0	188.6
$H^+ + AsH_3 = [AsH_4]^+$	187.48			
$Li^+ + HF = [Li - FH]^+$	23.49	23.28	27.9	
$Li^+ + HCl = [Li-ClH]^+$	17.86	16.93	13.7	
$Li^+ + HBr = [Li - BrH]^+$	17.05			
$Li^{+} + H_2O = [Li - OH_2]^{+}$	35.97	34.17	39.0	34.0
$Li^{+} + H_2S = [Li - SH_2]^{+}$	24.94	23.17	17.9	
$Li^+ + H_2Se = [Li - SeH_2]^+$	24.50			
$Li^{+} + NH_3 = [Li - NH_3]^{+}$	41.09	38.43	44.9	39.1
$Li^{+} + PH_3 = [Li - PH_3]^{+}$	26.92	25.01	26.0	
$Li^+ + AsH_3 = [Li - AsH_3]^+$	22.81			
$Na^+ + HF = [Na-FH]^+$	16.96	16.73	20.7	
$Na^+ + HCl = [Na-ClH]^+$	10.70	10.07	8.8	
$Na^+ + HBr = [Na - BrH]^+$	10.37			
$Na^{+} + H_2O = [Na - OH_2]^{+}$	25.24	23.84	28.2	24.0
$Na^{+} + H_2S = [Na - SH_2]^{+}$	16.04	14.66	12.5	
$Na^+ + H_2Se = [Na-SeH_2]^+$	15.85			
$Na^{+} + NH_3 = [Na - NH_3]^{+}$	28.56	26.45	32.5	
$Na^{+} + PH_3 = [Na - PH_3]^{+}$	17.75	16.26	17.8	
$Na^+ + AsH_3 = [Na - AsH_3]^+$	14.43			

^a Scaled by 0.89, calculated at the 6-31+G^{*} level and in two cases with different geometries, viz., $[Li-FH]^+(C_s)$ and $[Na-FH]^+(C_s)$.

preference (HSAB principle) of HF to react with different bases, viz., $F \gg Cl > Br$, $O \gg S > Se$, and $N \gg P > As$.

Recently, Datta²⁷ has shown that an exchange reaction of the type AB + CD = AC + BD proceeds in a direction such that the hardest possible species is formed and the average hardness value of the products is more than that of reactants. It may be noted that neither of these conclusions seems to be valid in case of complexes of HF. It may be due to the fact that HF is exceptionally hard and Datta's calculation²⁷ was on the MNDO level as opposed to the present ab initio calculation. It has also been observed that in a reaction where anomeric effect is operative²⁸ and in a proton-transfer reaction¹⁶ the driving force is the formation of the hardest possible species as product. The former calculation²⁸ was on the MNDO level, whereas the latter one¹⁶ is on the ab initio SCF level. Chattaraj and co-workers have verified the validity of MHP in static¹⁶ as well as dynamic²¹ situations.

Table 3 comprises reaction energies for the reactions of both HF and Ag⁺ with various bases at different levels of computation including their zero point energy (ZPE)-corrected values. The ZPE values are all calculated at the HF/6-311+G^{**} level and have been scaled²⁹ by 0.89. Reaction energy values for the reactions of the hard acid, HF, with different bases reveal that for these reactions the HSAB principle works even at the HF level. Calculations at the correlated levels produce different energy values, but the trend remains the same. It is interesting to note that S, Se, P, and As can form reasonably strong hydrogen bonds.

The calculation of reaction energies of the reactions of the soft acid, Ag⁺, at the HF level is not able to reproduce the proper

Figure 1. Dependence of F-H frequency shift (in cm^{-1}) in binary complexes of HF on the respective ZPE-corrected complexation energies (in kcal/mol) calculated at the HF/6-311+G** level.

energy order. It may be due to the fact that for soft-soft interaction covalent bonding predominates, whereas hard acids and bases prefer to have ionic bonding.^{3,19} A numerical support to this statement has been provided¹⁹ within DFT. Thus, it appears that the effect of correlation is important in case of soft-soft interaction which is quite understandable because Ag⁺ is having a highly polarizable core and unless the in-out correlation is properly taken into account the results would not be very meaningful. At the MP2 level, the order has been found to be altered in most cases, e.g., F < Cl < Br and O < S < Se. For these bases, the reaction energies from the MP2 level or higher level single point calculations clearly show that Ag⁺, like any other soft acid, follows the same order of preference as suggested by HSAB principle. Although the difference in reaction energies for the reactions producing $[Ag-NH_3]^+$ and $[Ag-PH_3]^+$ has been reduced considerably, as we go from the HF level to the MP4SDTQ level, Ag^+ still prefers to bind to NH_3 rather than to PH₃ which is against the HSAB principle. However, it may be noted that AsH₃ is less preferable to Ag⁺ than PH₃ as predicted by the HSAB principle.3,5,7

Figures 1 and 2 depict the variation of shifts in frequency of F-H stretching absorption bands in HF when it forms hydrogenbonded complexes with different bases, with the corresponding reaction energies (ZPE-corrected) calculated at the HF/6-311+G** and MP2/6-311+G** levels, respectively. An approximate linear correlation is discernible in these plots. Similar studies were carried out earlier^{30,31} in the context of hydrogen bonding abilities of alkyl halides and chalcogenides where an apparent violation³¹ of the Badger-Bauer rule³² was observed. Our $\Delta\nu_{F-H}$ and reaction energy values, however, follow the same order but for the $\Delta\nu_{F-H}$ values for the bases FH and ClH, where the order has been reversed. As in earlier studies,^{30,31} the present calculation also shows that oxygen and nitrogen bases are strong proton acceptors during hydrogen bonding compared to their halide counterparts.

⁽²⁷⁾ Datta, D. Inorg. Chem. 1992, 31, 2797.

⁽²⁸⁾ Hati, S.; Datta, D. J. Org. Chem. 1992, 57, 6056.

^{(29) (}a) Pople, J. A.; Schlegel, B.; Krishnan, R.; DeFrees, D. J.; Binkley, J. S.; Frisch, H.; Whiteside, R.; Hout, R. F., Jr.; Hehre, W. J. *Int. J. Quantum Chem. Symp.* **1981**, *15*, 269. (b) DeFrees, D. J.; McLean, A. D. J. Chem. Phys. **1985**, *82*, 333. (c) Komornicki, A.; Pauzat, F.; Ellinger, Y. J. Chem. Phys. **1983**, *87*, 3847.

⁽³⁰⁾ Schleyer, P. v. R.; West, R. J. Am. Chem. Soc. 1959, 81, 3164.
(31) West, R.; Poweil, D. L.; Whatley, L. S.; Lee, M. K. T.; Schleyer, P.

v. R. J. Am. Chem. Soc. 1962, 84, 3221.

Fig. 2. R.E. at MP2 level (-kcal/mole)

Figure 2. Dependence of F-H frequency shift (in cm⁻¹) in binary complexes of HF on the respective ZPE-corrected complexation energies (in kcal/mol) calculated at the MP2/6-311+G** level.

Various geometrical parameters calculated at the MP2/6-311+G** level for these complexes are reported in Table 4. As expected from HSAB principle, in most of the HF bonded complexes, the HF bond lengths decrease in the direction of their decreasing magnitude of complexation energies.

In $[Ag-AsH_3]^+$, three hydrogen atoms in AsH₃ come very close to Ag and form strong Ag-H bonds, and hence the respective geometrical parameters are also given at the bottom of Table 4.

Table 5 compares the total energies of several H⁺, Li⁺, and Na⁺ bonded complexes calculated at the MP2/6-311+G^{**} level with the corresponding ab initio MO calculation results of Smith et al.¹² at $6-31G^*//3-21G$ level. Similar comparison for the corresponding reaction energies is made in Table 6. The ZPE-corrected values (except for the complexes containing heavier

elements, viz., Br, Se, and As) and experimental values³³⁻³⁵ wherever available are also listed in Table 6. The ZPE values are calculated at the HF/6-31+G* level and in two cases with different geometries, viz., C_s symmetry for [Li-FH]⁺ and [Na-FH]⁺. They are scaled²⁹ by 0.89, the ZPE-corrected values compare favorably with the available experimental values.³³⁻³⁵ Both the hard acids, Li⁺ and Na⁺, prefer to bind to bases in the order governed by HSAB principle. However, for reactions with protons it is not always true. It behaves very erratically as far as the HSAB principle is concerned. It may be noted that the ionization potential and hence the hardness (eq 2) of proton cannot be defined properly.

In the present study we have noticed that the HSAB principle works in many cases. At the same time it fails to predict the proper order of preference for several reactions. Out of 45 reactions studied there are five exceptions. Perhaps the hardsoft factor should be properly supplemented by the strengths of acids and bases³⁶⁻³⁸ in order that the HSAB principle can predict the correct directionality of all acid-base reactions.

Conclusions

Ab initio calculations have proved the validity of the HSAB principle in many reactions. However, there are several cases where the principle does not work. For interactions involving hard acids the Hartree–Fock level calculation is sufficient, whereas the effect of correlation has been found to be important for the reactions of soft acids. Maximum hardness principle can be viewed as the principle dictating the formation of the hardest possible species as the product in the reaction of a hard acid, with a given group of bases, which is the most favorable according to the HSAB principle.

Acknowledgment. We are grateful to the referees for constructive criticisms. P.K.C. would like to thank the Indian National Science Academy, the Deutsche Forschungsgemeinschaft, and CSIR, New Delhi for financial assistance. He is also thankful to Martin Kaupp for helpful discussions.

(33) Lias, S. C.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data; 1988; Vol. 17, Suppl. 1.

- (34) Woodin, R. L.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 501.
- (35) Dzidic, I.; Kebarle, P. J. Phys. Chem. 1970, 74, 1466.
- (36) Drago, R. S.; Kabler, R. A. Inorg. Chem. 1972, 11, 3144.
 (37) Pearson, R. G. Inorg. Chem. 1972, 11, 3146.
- (38) Drago, R. S. Inorg. Chem. 1972, 11, 3140 (38) Drago, R. S. Inorg. Chem. 1973, 12, 2211.

⁽³²⁾ Badger, R. M.; Bauer, S. H. J. Chem. Phys. 1937, 5, 839. Badger,
R. M. J. Chem. Phys. 1940, 8, 288.
(33) Lias, S. C.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R.